CTU Presenta

0 GTTU 0

Centro Fiera del Garda Montichiari (Bs)

La Propagazione in 160 m.

IV3PRK - Pierluigi Mansutti

160m Propagation

Carl Luetzelschwab K9LA

k9la@arrl.net http://mysite.ncnetwork.net/k9la

Translation and EU additions by Pierluigi "Luis" Mansutti IV3PRK http://iv3prk.it

Assumption

- Carl Luetzelschwab K9LA is one of the most authoritative studious of ionospheric propagation, with particular interest on 160m
 - He cooperates with ARRL and the propagation columns of the main american radio magazines; a lot of the published material is downloadable from his website: <u>http://mysite.ncnetwork.net/k9la</u>
 - Since many years his propagation lectures are appreciated in the most important DX conventions
- This presentation, shown by K9LA in the RSGB convention 2010, has been translated in Italian language and modified <u>after his</u> <u>authorization</u> with the addition of further pages
 - My comments and the 18 years historical graphs, show what kind of DX can be expected on 160m, and WHEN can be to worked by an <u>average</u> station in Italy.

IV3PRK

What We're Going to Cover

- Quick Cycle 24 update
- Fundamental physical truths
- Normal propagation
- Interesting observations
- 160m predictions (or lack thereof!)
- Summary

Cycle 24 Update - Sunspots

K9LA - iv3prk - CU Italy 2011

Cycle 24 Update - Ap

Geomagnetic field is the quietest we've ever seen

Foreword

- There's still a lot we don't know about 160m propagation
- The biggest area where we lack a good of understanding appears to be the lower ionosphere – i.e., the D region and lower E region
 - We really don't have any day-to-day parameters tied to this area of the ionosphere
- Thus don't expect this presentation to be "The Secrets of 160m Revealed"
- Recommendation to better "understand" propagation on 160m, be very active on topband

Fundamental Physical Truths

What Does It Take to Make a QSO?

- Enough ionization to refract signal back to Earth
 - MUF not a problem on 1.8 MHz even in the dead of night at solar minimum

Global Ionospheric Chart for 2009/12/15 06:00:00 UTC

K9LA - IV3prk - CU Italy 2011

Ray Tracing vs Elevation Angles

- E region still comes into play at night at low elevation angles
 - foE approximately 0.4 MHz at night
 - Angles below approximately 7° are refracted back to Earth by the E region
 - High angles don't escape

What Does It Take to Make a QSO?

- Low geomagnetic activity
 - Very important and prohibitive on the high latitude paths
 - Minor influences on the low and transequatorial paths

What Does It Take to Make a QSO?

- Strong enough signal to be readable
 - Ionospheric absorption on 1.8 MHz is the real problem too much and signal is below your noise floor (which is usually not your receiver MDS)

low noise receiving antenna are very helpful for serious DXing

K9LA - iv3prk - CU Italy 2011

Refraction and Absorption

- Refraction and absorption are inversely proportional to the square of the frequency
- Thus for a given electron density profile
 - The lower the frequency, the more the refraction (bending)
 - The lower the frequency, the more the absorption

160m RF is bent the most and incurs the most absorption

Ray Tracing on 28 MHz

- o-wave and x-wave pretty much follow the same path
 - Index of refraction approximately the same
 - X-wave bends a tiny bit more
- o-wave and x-wave pretty much incur the same amount of loss
 - Absorption approximately the same
- Apogee ~ 240 km

on higher HF bands, o-wave and x-wave propagate approximately equally

Ray Tracing on 1.8 MHz

посл порт оо наг/ 2011

and polarization at mid to high latitudes on

160m tends towards elliptical (à vertical)

• O-wave and x-wave <u>do not</u> follow the same path

- Index of refraction significantly different
- x-wave bends much more
- O-wave and x-wave <u>do not</u> incur the same amount of loss
 - Absorption significantly different
 - x-wave usually considered to be out of the picture when operating frequency is near the electron gyrofrequency
 - ranges from .7 to 1.7 MHz worldwide
- Apogee for o-wave ~ 170 km
 - 160m wave doesn't get as high into the ionosphere

What a difference from 80m !

- Both waves start with an elev. angle of 15 deg.
 - the 1.8 MHz wave is refracted at 164km and reaches the ground at 1.149 km distance (1° hop) after leaving 10.8 dB for absorption loss the 3.8 MHz wave is refracted at 215km and reaches a distancr of 1.531 km after leaving only 2.1 dB for absorption loss.

Thus for a distance of 9.300 km (from Italy to Japan or to U.S.West Coast) under normal "multi hop" propagation we require:

- 6 hops on 80 m. with total absorption loss of 12.8 dB
- 8 hops on 160 m. with total absorption loss of 87.4 dB

Multi-hop on 160m

- Based on previous slides, multi-hop propagation on 160m is via hops that are short and lossy
 - "Short" is relative but it's not 3000 or 4000 km hops like on the higher frequencies
- Per our present understanding of the lower ionosphere, at night a 1500 Watt signal with quarter-wave verticals on both ends can go about 10,000 km before being below the noise level of our receiving system (usually limited by external noise)
 - Daytime limit around 1000 1500 km

This Suggests Ducting

Distances at and greater than 10,000 km are likely due to ducting in the electron density valley above the nighttime E region peak

Ducting incurs less loss due to less transits through the absorbing region and less ground reflections

NM7M's Work with GCRs

- Galactic cosmic rays are mostly very high energy protons coming in from all directions – day and night
- Quiet magnetic field (solar min) lets more in – more ionization in the lower ionosphere
- Active magnetic field (solar max) keeps them out
- GCR measurement on Earth (and thus impact to ionosphere) is 180° out of phase with solar cycle

K9LA - iv3prk - CU Italy 2011

CGRs and the Valley

- NM7M's theory is that galactic cosmic rays play an important role in the valley formation, and thus ducting
- At solar maximum, not many GCRs ionizing the valley – nice and deep
 - Extremely long distance
 DXing best at solar max
 - NM7M has some interesting plots of QSO distance vs GCR decrease, but there is conflicting data
- At solar minimum, too many GCRs ionizing valley – fills up more and all we have left is lossy multi-hop

W4DR Observations

personal e-mail, late December 2009

"I have been DXing on 160 since 1970, with for the most part aboveaverage antennas.

During this present sun spot minimum (the last 2 years and especially the last 8 weeks) I have worked more polar path stations, Zones 17, 18, 19 and 23 plus some 40's than I have in the previous 37 years. This included my first ever zone 23 on Dec 12.

On the other hand I have not worked any long path or bent path SE Asians in the last 4-5 years."

tends to confirm that 160m propagation across the poles is best at solar minimum, and long distance DXing per NM7M's hypothesis may need a bit more geomagnetic field activity

IV3PRK Observations: this graph shows the total of weighted openings with OCEANIA (13.000 to 18.000 km distance) since 1992, related with solar flux, geomagnetic activity and galactic

K9LA - iv3prk - CU Italy 2011

IV3PRK Observations: from this graph, representing only New Zealand path (18.000 km.), appears even better the absolute lack of openings from 2000 to 2004 – during solar maximum, and thus with lowest GCRs

This agrees with the comments of Greg, ZL3IX, on the other side

IV3PRK Observations: this graph, representing a lower latitude path to VK6 (13.500 km), appears to be better towards solar maximum and thus here we find a match with NM7M GCRs theory

..... but it must to be verified with the new cycle 24 !

K1ZM Observations

- Over the years I have had MANY experiences on the longpath from VY2ZM
- in 2008 I used to work over 100 JA's from 0745z 1200z in the morning (this shortpath) - and then in the afternoon, via the LONGPATH I might work 26 more JA's starting at 2020z and ending up about 2205z with JA6/JA4 contacts in Southern JA.
 - In this latter case, I was competing with EU stations which is a real challenge to do.
- I have also worked 9V1 on both CW and SSB mode via the longpath at 2305z from VY2ZM; also VK6HD and VK6VZ (both on CW and SSB mode) near his sunrise time - I think it was around 2100z or so some years ago
 - I have copied YC0LOW via the LP near his sunrise but no qso was ever made - this in Dec 2010)

Jeff confirms W4DR observations about great conditions across the poles, but disagrees on the very long distance paths, as he worked many longpath QSOs also during these last years of solar minimum.

IV3PRK Observations

- Not many of us can afford a lowband dream station like VY2ZM with an impressive and very efficient antenna system, surrounded by the sea and far from most manmade noise.
 - I would settle also for his K1ZM location on Cape Cod, MA !
- Instead my station is an "average" one, without the possibility to stretch any Beverage in the needed directions, and fighting continuously against the increasing noise with every kind of other short receiving antennas.
- I reached almost 300 countries on 160m, but unlike Jeff, I never enjoyed the thrill of working a DX over the long path.
- Recently I realized that a LP QSO could be possible also from Italy: but we need to be "there" at the right time to get the opportunity of our "spotlight".
- Going through the logs of ZL8X I found 105 QSOs with Europe over the long path - 4 of which with northern Italy – not many of them have the antennas of K1ZM !
 - There have been 7 days of LP openings via SW from about 06.30z until EU SR

It is confirmed once again that 160m propagation allows sometimes unbelievable DX with challenge to the fundamental phisical truths!

From ZL8X 160m log – Kermadec DXped. 2010

Nr. 908 EU QSOs via SP (Bleu sq.) and Nr. 105 QSOs via LP (Black sq.)

Pin colours: azure =>3 stations per Grid Sq., green =>5, bleu =>8, red => 10

	IP52	IP62 _{0Y}	IP72	IP82	IP92	JP02	JP12	JP22	JP32	JP42	JP52	JP62	JP72	JP82	5 JP92	KP02	KP12	KP22	KP32	"KP42	KP52	KP62 <	5
	IP51	IP6Ì	IP71	IP81	IP91	JP01	JP11	JP21	JP31-	JP41	JP51	JP61	∵JP71.	JPST	JP91	KP01	KP	dKP21	KP31	KP41	-KP51	KP61	-
	IP50	IP60	IP70	IP80	4 8 90	JP00	JP10	JP20	JP30	JP40	JP50	JP60 8	JP70	JP80	JP®JQ	KP00	KP10	KP20	KP30	RP40	KEP0-	KP60	
	1059	1069	1079	1089	+ IO99	J009	JO19	J029	JO39	JO49	JO59	JO69	J07 8	s JOSS	JU99	KO09	K019	<mark>, KO29</mark> ²	K039	KO49	K059	KO69	[
	1058	1068	IQ78	1088	1098	J008	JO18	J028	JO38	JO48	JO58	JOSE	J078	JO88	JO98	KO08 3	KO18	F528 5	KOSA	KO48	KO58	KO68	~
	1057	1067.8	1077	1087	> IO97	J007	J017	J027	JO37	J047	JQ57	JO67	J077	JD87	JO97	K007	R012	K027	K037	KQ4ZIW	KO57	K067	ι
	1056	1066 🗟	1076	1086	1096	J006	JO16	JO26	JO36	J046 2	J056	JO66	J076	J086	J096	K006_	KO16	KO26	KO36	KO46	KO56	KO66	Γ
	1055	1065	4075	1085	1095	JO05	JO15	JO25	JO35	JO45	JEss	JO65	JQ75	JO85	J095	KC05	K015	KO25	KO35	KQ45	K055	KO65	Γ
25	1054	1064	1074 GI	0 (084	1094	JO04	JO14	JO24	JO34	J044	J054	JO64	J074	JO84	6034	KO04	KO14	K024	KO3 <u>¢</u> U;	KO44 -	KO54	KO64	[
	1053	EI 1063 👌	1073	1083	1093	J003	JO13	J023 -	JD33	JO43	JO53	JO63	J073	JO83	J093	K003	SR013	KO23	KO33	KO43	KO53	KO63	Ļ
1	1052	1062	1072	1082	1092	J002	JO12	J022	3032	JQ42	JO52	J062	J072	4P92	JO92	KO02 5	KO12	KO22	KO32 -	KO42 tu	s <mark>KO52</mark>	KO62	Γ
-	1051	1061	1071	1081	1031	-JC01	JOII	J021	J031	DÓH,	J051.	JOST	J 071	JOST	JOST	sKQ01	^с кон	KORA	KQ31	~коц~	K051 U	F KO61	L AVA
	1050	1060	1070	1080	1090	J000	JO10	JO20	<mark>1030</mark>	J°i∉0	J050	JO6 0	J 070	JOSA	JO90.,	KO00	KO10	KO20	KO30	KO40	KO50	KD60-	F
Γ	IN59	IN69	IN79	IN89 ^{GL}	(N99_	JN09	JN19 4U#SC1	JN29-	JN33	JN49	JN59	JN6	JN79	JN89 2	UNS ă -	KN03	KN19	KN29	KN39#T	KN49	KN59 #	CKN69	۲: ۲
	IN58	IN68	IN78	IN88	- 1N98	JN08	JN18	JN28	JN38/	JN48	JN58	JN68	JN78	JNS6	JNS 81	KN08	KN18	KN28 L		KN48	KN58	URNis	2
	IN57	IN67	IN77	IN87	IN97	JN07	JN17	JN27	JN37	ĴN47	_a JN57 _E	7 JNDE2	JN77	JNS/ H	JN97	KN07.	KN17	KN27	KN37	FRN47		IRHM67	-
	IN56	IN66	IN76	IN86	UN96	JN06	JN16	JN26		JN46	UN9613	JINK	<u>diya</u> si	JNS6	H <mark>UN9R</mark>	KN06	KN16	KN286	KN36	KN46	KN56	KN66	ľ
	IN55	IN65	IN75	IN85	IN95	JN05	JN15	JN25	JN35	II JN45	JN5	Alles	JN75	JN85	JN95	KN05	KN15	KN25	KN35	KN45	KN55	KN65	ί
T	IN54	IN64	IN74	IN84	IN94	JN04	JN14	JN24	JN34	JUNA 4	JN54	JN64	JN74	JN84	JNS4	KN04	RN14	KN24	KN34	KN44	KN54	KN64	-
T	IN53.6	1N63-	~ N73_ -	~-I <u>N</u> 83	-IN93	JN03	JN13	-JN23_	JN33	JN43	JN53	JN63	JN73	JN83	JN93	KN03	KN13	KN23	KN33	KN43	KN53	KN63	Γ
T	IN52	IN62	IN72	IN82 -	IN92	JN02	JN12	JN22	JN32	JN44	JN52	IT JIV62	JN72	7JN82	JN92 z	KN02	KN12	KN22	KN32	KN42	KN52	KN62	Γ
T	IN51		IN71	IN81	IN91 ⁻²	JN01	JN11	JN21	JN31	JN41	JN51	JN61	JN71	4N81 ₁₃	JN91	KN01	KN11	KN21	KNBAI	-KN41	KN51	KN61	Γ
	IN50	IN60	IN70	16180	(IN90)	JIN00	JN10	JN20	JN30	JN40	JN50	JN60	JN70	JN80	JN90	KN00	KN10	6M20-	KN30	KN40	KN50	KN60	Γ
	IM59	IM69	IM79 E	4M89	_IM99 (JM09	JM19	JM29	JM39	00449	JM59	JM69	JM79 ^D	ÚM89	jwaa ≥	KM09	KM19	KM29	кмзэт.	XM49	KM59	KM69	Γ
	IM58	IMES	IM78	IM88	1 M98	JM08	JM18	JM28	JM38	JM48	JM58	IF ^{JM68}	JM78	JM88	JM98	KM08	KM18	KM28 3	KM38	KM48	KM58	KM68	ľ
	IM57	IM67	IM77	IM87	JIM97	JM07	JM17	JM27	JM37	JM47	JM57	JM67	119 JM77J9	JM87	JM97	KM07	SKM17	KM27	KM37	KM47	KM57	KM67	Ę
	IM56	IM66	IM76	IM86	IM96	JM06	JM16	JM26	JIMSE	JM46	JM56	JM66	JIM76	JM86	JM96	KM06	KN/16	KM26	KM36	SV3/146	KM56	KM66	2
<u> </u>			EQ3		71/	V							1.01									the second se	-

How and When was such ZL8 QSO via LP possible? DX Atlas: 29 Nov. – time 06.30z (3 QSO with I4 and 1 with I2 from 06.37 to 06.48)

Normal Propagation

Common Darkness

- Best place for 160m RF is in the dark ionosphere
 - The term "common darkness" along a path came from W4ZV in his 1991 Proceedings of Fine Tuning article and his 13 Jan 97 topband reflector post

K9LA sunset

STØ sunrise

4 hours and 25 minutes of common darkness K9LA - iv3prk - CU Italy 2011

Peaking time of 160m openings from IV3PRK to North Atlantic Area (W1, W2, W3 and VE1, VE2, VY2 stations) counted each day of the year, through all the years

K9LA - iv3prk - CU Italy 2011

Peaking time of 160m openings from IV3PRK to Central U.S.A. (W6 and W0 call area) counted each day of the year, through all the years

Peaking time of 160m openings from IV3PRK to southern part of S.A. (below the Equator) counted each day of the year, through all the years

Peaking time of 160m openings from IV3PRK to JAPAN counted each day of the year, through all the years

K9LA - iv3prk - CU Italy 2011

Interesting Observations

some of them make you wonder about our age-old beliefs

Signal Enhancements

- Most prevalent on the western end of the path when the eastern end is around sunrise
 - can bring a signal from no copy (below your noise) to perfect Q5 copy for tens of minutes
- Similar enhancements reported on the eastern end of the path when the western end is around sunset
- Enhancements believed to be tied to ducting
- Ducting (specifically getting out of the duct) may also have a lot to do with spotlight propagation

VE7DXR recording of Meyerton (South Africa) shortwave station showing ~13 dB enhancement

Skewed Paths

Image from "Skewed Paths to Europe on the Low Bands", K9LA, CQ, August 1999

Don't always assume a great circle path - remember the lower the frequency, the more the wave refracts (both in the vertical plane and in the horizontal plane)

If there's going to be a skewed path, 160m is the most likely band

The auroral oval is probably the most likely cause of skewed paths

Spike in the K Index

- Many observations of enhanced propagation across the high latitudes right before (or concurrent with) a spike in the K index
- Includes improved propagation on the AM broadcast band
- Mechanism may be tied to an increased
- With less ionization of the F layer, there is an increase in the deepness of the Field
- But until a point where the upper layer collapses and the signal is lost in the space

We experienced very strong signals in the evening from East and SE directions or good signals in the morning from West Coast skewed over West or SW paths

Spike in the K Index

- This is a recent example:
 - Feb. 01, 2011 16z: Aurora = 9
 - at 18z the K index jumps to 4

From 160m log of IV3PRK:

- 17.15z ZL3IX 559 559
 - Greg is active every day, but I was not hearing him since Jan.14
- 19.33z VK4MA 599 599
- 19.36z VK3PA 579 569
 - No QSOs with Eastern Australia stations since last Srptember
- 20.26z T88ZM 559 559
 - Answered my CQ on a quiet band
- 22.09z 9L1BTB 589 599
 - Loud and heard answering my CQ on the back of Rx antenna
- Unusual for me: NO calls from JA
 - Is this path too close to the Aurora Oval?

The Gray-line, or "Terminator" is the line around the Earth that separates the areas of daylight and darkness. Along this band the D layer is absent, while the F layer ionization is still good allowing very efficient propagation on low bands, especially on 80 and 40m, more than on 160 m

At left : 24 Feb.- <u>sunrise gray-line</u> through West Africa, ZD7, ZD9, VP8 3Y0, and up to Hawaii is. Right: 24 Feb. - <u>sunset gray-line</u> from Alaska through Central and South Africa

Gray Line

- N6FF to A61AJ
 - Nov 29, 1999 at 1455 UTC (N6FF sunrise)
- N6FF heard A61AJ best from the southwest
 - SW on sunrise end, SE on sunset end
- Suggests long path, but true great circle path has too much daylight
- Is it a skewed path?
 - Where's the skew point?
- What path did the RF follow?
- Are we fooled by short path?

Propagation Along the Terminator

 3Y0X (Feb '06) worked 287 Zone 4 stations from 0210 UTC (image on left) to 0901 UTC (image on right)

Note that this is short path

 Path only near terminator at 3Y0X end – and path gets away from the terminator quickly K9LA - iv3prk - CU Italy 2011

Propagation Along the Terminator

- 3Y0X worked 8 Zone 20 stations (YO, SV, LZ) from 00422 UTC (image on left) to 0522 UTC (image on right)
- Note that this is short path

 Path closer to the terminator – and not perpendicular
 K9LA - iv3prk - CU Italy 2011

Propagation Along the Terminator

 3Y0X only worked 1 JA at 0819 UTC Note that this is short path

 Path pretty much along the terminator This data indicates that gray line propagation on 160m on the short path is <u>not</u> efficient

- Our model of the ionosphere agrees with this data
 - But our model also says that Marconi's feat never should have happened – may be just a high latitude issue
 - And that VY2ZM on PEI never should have heard the 100 Watt GB3SSS Poldhu beacon on 1.96 MHz – same high latitude issue
- There's something going on that we don't understand

- Is solar minimum really the best time for 160m?
 - Geomagnetic field is quieter
- 160m appears to be best at solar minimum if your path goes through the auroral oval

IV3PRK to North America

From K9LA analysis of IV3PRK logs in the year 2004

path from IV3PRK to	# of QSOs	result
North America East Coast	106	92% of QSOs at $K \le 3$
North America Midwest	67	96% of QSOs at $K \le 3$
North America West Coast	26	100% of QSOs at $K \le 2$

West Coast is definitely better under Solar Minimum

Solar Min still best, but solar max hanging in there

Solar maximum holds up well when path not near aurora oval

North Magnetic Pole is Moving

As the north magnetic pole moves even farther north, will 160m propagation from the West Coast to Europe improve?

IV3PRK: West Coast (+KH6 e KL7) Season's openings

this graph is made of quantity and quality of the openings

Last seasons benefit of the exceptional quiet geomagnetic field, but the current one, despite the same numbers, looks like way down ! WHY ?

160m Predictions (or lack thereof!)

Predictions

- Our propagation predictions typically cover 3 30 MHz
 - There are additional variables that impact frequencies below 3 MHz (e.g., electron gyro-frequency), and I believe they are not all identified yet
- Several studies in the past used 10.7 cm solar flux and the A index
 - No good daily correlation seen
- Bring in space weather parameters
 - Do your own evaluation
 - OH2BO (way up north) monitors solar wind speed and dynamic pressure
 - NZ4O (formerly KN4LF) outlines parameters on his web site
 - I personally believe we haven't identified all the important parameters
- Correlation to AM broadcast propagation
 - N6RK brought this up on the topband reflector
 - May be localized effect or may be widespread effect
 - My analysis when we lived in Texas (1980s) didn't show any consistent results
 - There were days with enhanced 160m propagation but not enhanced AM broadcast propagation

Summary - Propagation

- Polar paths should generally be great now and for the next year or so
- Extremely long-distance paths may be hurt by this deep solar minimum
- Understand the concept of common darkness and learn how to determine it
- Watch for signal enhancements around sunrise and sunset
- Be very active to catch spotlight propagation to your area
- In general vertical polarization will work best
 - But you can't have too many antennas on 160m (who first stated that?)
- Don't shy away from elevated K-indices
 - Can provide skewed paths around the auroral zone
 - Can provide enhanced paths across the high latitudes
- Remember "southwest at sunrise" and "southeast at sunset" along the long path (even if we don't understand it, take advantage of it)
- Don't shy away from solar maximum
 - Even though S9+ signals on 10m are easier to deal with, be tough and stay on 160m

IV3PRK summery graph: synthesizes quantity and quality of DX openings towards all continents, quarterly grouped since 1992, related (or not related) with solar and geomagnetic activity, and cosmic radiations

K9LA - iv3prk - CU Italy 2011

Reading Material

- ON4UN's prop. and Rx antenna chapters in his Low-Band DXing series
 - 5th Edition has been just published
 - Lots of practical information
- "DXing on the Edge" by K1ZM

– K9LA

– Cary Oler

- Topband history and a lot of useful info also for beginners
- Web sites with space weather info and 160m content
 - W8JI http://www.w8ji.com
 - W4ZV http://users.vnet.net/btippett/images/W4ZV.htm
 - IV3PRK http://www.iv3prk.it
 - VE6WZ http://www.qsl.net/ve6wz/geomag.html
 - NZ4O http://www.solarcycle24.org
 - VE3NE http://www.solarcycle24.com/
 - NW7US http://www.hfradio./org
 - http://mysite.ncnetwork.net/k9la
 - http://www.spacew.com

Apologies to any we missed !

CTU 2011

০ টেন্দ্র ি০

Thank You

IV3PRK – Pierluigi Mansutti

