Rx antennas at IV3PRK: the TX3A DHDL

DOUBLING the Double Half-Delta Loop Receiving Antenna

by Pierluigi "Luis" Mansutti IV3PRK

The design of this receiving antenna was originated by Jose Carlos, N4IS, who sent me the Eznec files, and George AA7JV, who used a single element on Chesterfield is. DXpedition and published for downloading from the TX3A web-site: http://tx3a.com/equipment.html

The basic design is essentially two half delta loops interconnected to create a single antenna, with one transformer and one load resistor, as well documented in the AA7JV paper. The innovative idea of connecting those loops at low level, without a long top wire, allows an easier and lighter construction.

I have been always fighting with noise and interactions, and tried every kind of RX antennas, within my constraints and limited space. I found that the best ones, i.e. more quiet, are still the Pennants, their best characteristic being the "ground independence", i.e. no ground connection. So all my past experiences encouraged me to enter EZNEC and investigate on the best possible design which could fit on my property.

The RDF achievable with two of these arrays is above 12 dB , really impressive, and the gain is "only" - 27 dB , which is double (or better to say, half the loss) of the -55 dB of the Waller Flag and thus less problems with common noise and preamplifier requirements.

With 74 meters of total length I could get the same results of a long Beverage into the North direction where my toughest and most needed Pacific DX area is located.

Google Satellite picture with all 160 m. antennas situation on November 2009

The following is a table showing the characteristics of the Pennant and Flag loop antennas as a result of Eznec 5+ modelling:

Model	Gain	TO angle	Beamwidth	F/B	Avg.gain	RDF	Source R.	Source X	Load R.
Flag standard	29,97	30	149	30,0	- 37,73	7,76	948	-6	950
Waller Flag	- 56,09	22	79	27,0	- 67,67	11,58			
Pennant standard	- 35,50	30	148	32,4	- 43,28	7,78	915	3	870
Pennants - Endfire	- 32,35	30	123	56,0	- 41,22	8,87			
Pennants - Broadside	- 32,31	30	55	37,0	- 43,32	11,01			
TX3A - Delta Double	- 27,57	20	106	31,4	- 37,52	9,95	806	-105	1200
TX3A- DUAL Delta Double	- 26,77	18	74	31,0	- 39,05	12,28			

The benefits of the TX3A designs are an improved RDF factor, with a low take-off angle and a good front to back ratio, while keeping the gain (loss) low enough to require only a normal preamplifier.

It's interesting to compare the above characteristics with those of many other RX antennas. See the very interesting page of my friend Lee, K7TJR: http://www.k7tjr.com/rx1comparison.htm .

As usual with antennas there is no free lunch, and these loop arrays require greater dimensions and can be only in a fixed direction; furthermore the beamwidth is pretty sharp and so not a wide compass area can be covered, but it can be a killer weapon in the target direction!

EZNEC+

Particular: at mid point the wires cross each other but are not connected

As George said, there is nothing critical with this kind of loops and I investigated through Eznec models at the search of my optimum design. I began to change the load resistance value, because I didn't like that -105 ohms reactance appearing in the source data.

Model	Gain	TO angle	Beamwidth	F/B	Avg.gain	RDF	Load R.	Source R.	Source X
TX3A Delta Double	- 27,64	20	106	26,7	37,56	9,92	1150		
Height from 1,5 to 9 meters	- 27,60	20	106	30,5	- 37,53	9,93	1200	806	-105
Length 22 meters	- 27,57	20	106	31,4	- 37,52	9,95	1250	806	-105
	- 27,53	20	106	29,2	37,49	9,96	1300	806	-105
	- 27,50	20	106	26,4	- 37,46	9,96	1350		
	- 27,73	20	106	17,7	- 37,54	9,81	960	974	-1

Wide variations can be tolerated without differences in the RDF, just the F/B ratio is slightly peaking at 1.250 ohms. To get a purely resistive source data, the load should be reduced to 960 ohms, but at the expenses of the front to back ratio, which goes down below 18 dB , not acceptable.

My concern about the odd source data vanished after the insertion of a 12:1 transformer (one of the features of Eznec 5) and then a good match is achieved.

In the following table I summarise the results of Eznec runs with some dimensions variations:

Model variations	Gain	TO angle	Beamwidth	F/B	Avg.gain	RDF	Load R.
Shorted vert.wires 1 m.	29,16	20	105	29,3	39,11	9,95	1150
Height from 1,5 to 8 meters Length 22 meters	- 29,12	20	104	34,2	- 39,10	9,98	1200
	- 29,09	20	104	33,7	- 39,07	9,98	1250
	- 29,05	20	104	29,2	39,04	9,99	1300
Raised 0,50 m. (all)	29,24	20	104	28,2	- 39,26	10,02	1150
Height from 2 to 8,5 meters Length 22 meters	- 29,21	20	104	33,2	- 39,24	10,03	1200
	- 29,17	20	104	35,1	- 39,22	10,05	1250
	- 29,13	20	104	30,6	39,19	10,06	1300
Lenghted vert.wires 0,5 m.	- 28,47	20	105	27,0	38,46	9,99	1150
Height from 2 to 9 meters Length 22 meters	- 28,43	20	105	31,1	- 38,45	10,02	1200
	- 28,40	20	105	33,5	- 38,42	10,02	1250
	- 28,36	20	105	30,7	- 38,39	10,03	1300
	- 28,32	20	104	27,2	38,36	10,04	1350
Shorted 2 meters	- 30,62	20	104	25,8	40,65	10,03	1150
Height from 2 to 8,5 meters Length 20 meters	- 30,59	20	104	30,3	- 40,64	10,05	1200
	- 30,55	20	104	38,1	- 40,62	10,07	1250
	- 30,51	20	104	38,5	- 40,59	10,08	1300
	- 30,47	20	104	31,0	40,56	10,09	1350
Extended 4 meters	- 28,02	20	104	26,3	- 37,99	9,97	1100
Height from 2 to 8,5 metersLength 24 meters	- 27,99	20	104	30,5	- 37,97	9,98	1150
	- 27,95	20	104	32,5	- $\quad 37,95$	10,00	1200
	- 27,91	20	104	30,2	- 37,92	10,01	1250
	- 27,88	20	104	26,8	- 37,88	10,00	1300
	- 27,84	20	104	24,2	37,84	10,00	1350
Lenghted vert.wires 1 m .	- 26,54	20	106	24,5	- 36,47	9,93	1100
Height from 2 to 9,5 meters	- 26,51	20	106	27,4	- 36,46	9,95	1150
Length 24 meters	- 26,48	20	106	29,7	- 36,44	9,96	1200
	- 26,44	20	105	29,3	- 36,41	9,97	1250
	- 26,40	20	105	27,0	36,37	9,97	1300
	- 26,36	20	105	24,6	36,34	9,98	1350

We see that the antenna wants to work whatsoever, so next I took into consideration the available supports and the best placement among my fruit trees. The physical beauty of this array is that everything is at about 2 m . height: loads and feeding boxes with the low connecting wire stretched between them without disturbing anybody. Furthermore the entire receiving loop is extending above the metallic fences.

I bought four fiberglass fishing rods (7 m . long at 16.00 euro each) thin enough to support a very light 1 mm . aluminium wire (a cheap Japanese type sold in garden markets for bonsai use) and tied them on 2.5 m . wooden poles (used for trees support)

After choosing the dimensions of the loops I tried to find the best separation between them for end-fire configuration (with 180 degrees phase difference):

Model variations	Gain	TO angle	Beamwidth	F/B	Avg.gain	RDF	Load R.	Feed Imp.
N4IS/TX3A original design	26,42	18	75	27,6	38,66	12,24	1.150	39+j4
Height from 1,5 to 9 meters	26,39	18	75	31,0	38,64	12,25	1.200	41+j5
Length loop 22 meters	26,35	18	75	31,4	- 38,61	12,26	1.250	42+j7
Separation 28 m .	26,32	18	75	28,6	38,58	12,26	1.300	43+j7
Total extension 72 m .	26,28	18	75	25,8	38,54	12,26	1.350	41+j5
Shorted vert. wires 1 m .	28,03	18	74	29,2	40,32	12,29	1.150	40+j4
Height from 2 to 8,5 meters	27,99	18	74	34,7	- 40,30	12,31	1.200	41+j6
Length loop 22 meters	27,96	18	74	34,7	- 40,27	12,31	1.250	42+j7
Separation 28 m .	27,92	18	74	29,8	40,23	12,31	1.300	$43+\mathrm{j} 7$
Total extension 72 m .	27,88	18	74	26,2	40,19	12,31	1.350	41+j5
Reduced Sep. by 4 m .	28,56	18	73	29,2	40,91	12,35	1.150	40+j5
Height from 2 to 8,5 meters	28,52	18	73	34,6	40,88	12,36	1.200	41+j6
Length loop 22 meters	28,49	18	73	34,7	40,85	12,36	1.250	42+j7
Separation 24 m .	28,45	18	73	29,8	40,82	12,37	1.300	43+j7
Total extension 68 m .	28,41	18	73	26,2	40,78	12,37	1.350	41+j5
Extended Sep. by 8 m .	27,57	18	75	29,3	39,80	12,23	1.150	40+j5
Height from 2 to 8,5 meters	- 27,54	18	75	34,7	- 39,78	12,24	1.200	41+j6
Length loop 22 meters	- 27,50	18	75	34,9	- $\quad 39,75$	12,25	1.250	42+j7
Separation 32 m .	27,47	18	75	29,7	39,71	12,24	1.300	43+j7
Total extension 76 m .	27,43	18	75	26,2	39,68	12,25	1.350	41+j5
IV3PRK final design	27,79	18	74	29,2	40,05	12,26	1.150	40+j4
Height from 2 to 8,5 meters	- 27,76	18	74	34,7	40,03	12,27	1.200	41+j6
Length loop 22 meters	- 27,72	18	75	34,9	40,00	12,28	1.250	42+j7
Separation 30 m .	- 27,69	18	74	29,8	39,97	12,28	1.300	43+j7
Total extension 74 m .	27,65	18	74	26,2	39,93	12,28	1.350	41+j5

Again, very small differences for every kind of variations, with RDF going from 12.25 to 12.36 and F / B from 31 to 35 dB . So I choose the best separation to fit within my borders and the 4 -square RX array.

The transformers used are wound on binocular BN73-202. For 75 ohm cable I calculated 2 turns on the low side and 7 turns on the high side, but after installed I got a perfect match by removing one turn, Thus the final Xmfrs are both 2 turns on primary and 6 turns on secondary.

These are the azimuth and elevation beautiful plots (primary black traces) for correct phase reversing,. I added the recalled bleu traces for normal phasing, that is after inverting one of the feedlines connection, and we see that a broader pattern at higher angle results, which could be useful in some occasions.

So I put a couple of relays in the closest box containing the binocular transformer to provide an easy way to swap the feeding phase.

I performed some tests with a small 1.843 xtal oscillator in the near field of the array and they confirm the broader lobe without reversing the phase. It should be better to these tests with the spectrum analyzer of an SDR receiver, which records the oscillator signal and also the band noise.

On the air tests of these first days are well promising despite propagation or activity from Central Pacific is not as good as it was some weeks ago. Europeans and Russians high angle signals are always better with the normal broad lobe position; the same with Japan, which is at 45 degrees. The only one I heard better on the reversed - best weapon position - has been Merv, KH7C, as it should be, straight through the North Pole at low angle.

But this path is exceptionally possible only at low solar minimum, without Aurora or any geomagnetic activity. Generally the signals are skewed East or West of the Polar Cap, so I'm afraid that such an array, in the North direction, will be useful only for a limited time at low solar cycle...

In any case it has been a positive new experiment with receiving antennas and the next one will be with a broadside configuration.

TX3A DHDL Double in Broadside

This will give an even better pattern than the end-fire, and an RDF reaching 13 dB with a separation of 100 meters between the loops. Unfortunately, while the elevation angle is higher with a broader lobe, the horizontal one is very sharp and in my particular situation it does not cover any needed direction. It could be placed only into 90 or 270 degrees, not
 enough for my most wanted area of the United States, between 300 and 335 degrees.

The table shows once again there is nothing critical : with wider distance the RDF improves and the lobe sharpens, but above 100 m . two secondary side lobes arise, worsening the pattern.

Model variations	Gain	TO angle	Beamwidth	F/B	Avg.gain	RDF	Load R.	Feed Imp.
Broadside basic config.	25,92	22	52	27,0	38,58	12,66	1.150	40+j5
Height from 2 to 8,5 meters	- 25,89	22	52	31,0	- 38,56	12,67	1.200	41+j5
Length loop 22 meters	- 25,86	22	52	32,8	- 38,53	12,67	1.250	42+j7
Separation 90 m .	25,82	22	52	30,3	38,49	12,67	1.300	43+j7
	25,78	22	52	27,0	38,45	12,67	1.350	41+j5
Reduced Sep. by 10 meters	25,92	22	57	27,0	38,15	12,23	1.150	40+j5
Height from 2 to 8,5 meters	- 25,89	22	57	31,0	- 38,13	12,24	1.200	41+j5
Length loop 22 meters	- 25,86	22	57	32,8	- 38,10	12,24	1.250	42+j7
Separation 80 m .	- 25,82	22	57	30,3	38,07	12,25	1.300	43+j7
	- 25,78	22	57	27,0	38,03	12,25	1.350	41+j5
Extended Sep. by 10 meters	25,92	22	47	27,0	- 38,96	13,04	1.150	40+j5
Height from 2 to 8,5 meters	- 25,89	22	47	31,0	- 38,93	13,04	1.200	41+j5
Length loop 22 meters	- 25,86	22	47	33,0	- 38,91	13,05	1.250	42+j7
Separation 100 m.	- 25,82	22	47	30,3	- 38,87	13,05	1.300	43+j7
	- 25,78	22	47	27,0	38,83	13,05	1.350	41+j5
Extended Sep. by 20 meters	- 25,92	22	43	27,0	- 39,26	13,34	1.150	43-j3
Height from 2 to 8,5 meters	- 25,89	22	43	31,0	- 39,23	13,34	1.200	44-j4
Length loop 22 meters	- 25,85	22	43	33,0	- $\quad 39,20$	13,35	1.250	45-j5
Separation 110 m .	- 25,82	22	43	30,3	- 39,17	13,35	1.300	46-j7
	- 25,78	22	43	27,0	39,13	13,35	1.350	47-j8

These are the azimuth and elevation plots of the broadside configuration at 90 m . separation (black primary traces) compared with previous end-fire ones at 30 m . separation (blue traces).

Anyway I never tried the broadside configuration in my limited lot, but I knew that Rys SP5EWY was building such an array in his second DX radio location and on January 27, 2010 he posted on the Topband Reflector the following comments:
Hi All,
Beeing inspired by an article written by Luis IV3PRK http://www.iv3prk.it/user/image/..rxant.prk_tx3a.pdf (Thanks Luis!) I'v decided to build Double Delta Loop used by George on Chesterfield in a broadside configuration. Because of TX3D Australs DXpedition I'v made 250 m Beverage in their direction and and just a week ago I'v built also this described Delta system. I was trying both antennas in my second QTH 45 km from my house (its an orchard) yesterday but Deltas was not working and on Beverage TX3D was too weak. When I checked I discovered that one of wire in a delta was broken, so practically today was the first day I was able to compare antennas.
When I started to listening on Deltas in the first minutes I'v thought they are broken again because there was almost not any noise in a RX...but checking the band I'v found a lot of strong NA stations with very clean signals. I tested Deltas with the Beverage many times and always a difference was huge. Even a strength of stations was about $2 S$ better on the Beverage the difference in the level of noise was not comparable...it was like day and night.
Using the Beverage I haven't heard even a trace of TX3D....on Deltas I'v heard them about 20 minutesbut with deep QSB.

73 Rys
SP5EWY
These are further building details Rys sent me.
The distance between Deltas is about 95 m . Resistors are 1250 ohm , tranformers 12:1 bifilar windings , 2 pieces of coax 75 ohm each one 50 m connected together to transformer 2:1 and to 75 ohm coax. I used similar fishing bats... 8 m high but I removed the last thinest part, so they are $7,1 \mathrm{~m}$ high attached to 2 m high steel elements. The wire is $0,7 \mathrm{~mm}$ CU.
TX3D was my \#301 so I'm really VERY glad!

This is a picture of SP5EWY second low-band DX location showing one of the TX3A DHDL elements and the $1 / 4$ wave TX vertical. The environment is quite different from mine...but now I am sure that the design works OK!

