Tx antenna at IV3PRK: the Shunt-Fed Tower

The gamma match calculations

by Pierluigi "Luis" Mansutti IV3PRK

In 1991 I substituted my old homebuilt tower with a bigger, triangular self standing one, without guys or any cable going on. It's 24 meters high, with a 5 m. mast and a four elements yagi for 15 meters as a top loading.

Since the beginning I decided to use it as a 160 m. Tx antenna and I used the following procedure for the gamma match calculations.

At that time it was not yet possible to model a complex tower structure with Eznec and so I converted the triangular structure into a simplified cylindrical model based on the following:

Equivalent Cylindrical Diameter = $2 * CUBEROOT [(D * F^2)/2]$
where $\mathbf{D} = \mathbf{T}$ use diameter and $\mathbf{F} = \mathbf{F}$ ace width.

So the equivalent cylindrical diameters of the four sections of my tower are the following:

1°	: 6	meters	from	130	cm t	to 1	110 cm	n. on	side -	- 110) mm	tubes	: equivalent	diameter =>	> 86	cm.
2°	: 6	meters	from	110	cm	to	90 cm	. on	side	- 90	mm.	tubes	equivalent	diameter =>	> 70	cm.
3°	: 6	meters	from	90	cm	to '	70 cm	on	side -	70	mm.	tubes :	equivalent	diameter =>	56	cm.

 4° : 6 meters from 70 cm. to 70 cm. on side - 60 mm. tubes : equivalent diameter => 48 cm.

Then, with only those 4 wires, I modelled the tower in Eznec, put above it the mast and the four elements yagi, and found the impedance at the source point, on a Minimec ground.

s w	ires										🕒 View Antenna: TXant-minimec ground	
Wire	Create Ed	it Other									File Edit View Options Reset	
	oord Entry Mo	ode 🥅 <u>P</u> reser	ve Connect	ions				₩ 9	Show Wire Ir	nsulation	E	ZNEC+
						Wires						
N	lo.	Er	nd 1		1	Er	nd 2		Diamete	er Sec		
	X (m)	Y (m)	Z (m)	Conn	X (m)	Y (m)	Z (m)	Conn	(mm)			
1	-0.6	0	0	Ground	-0.6	0	6	W2E1	860	6	1	
2	-0.6	0	6	W1E2	-0.6	0	12	W3E1	700	6		
3	-0,6	0	12	W2E2	-0,6	0	18	W4E1	560	6		
4	-0,6	0	18	W3E2	-0,6	0	24	W5E1	480	6		
5	-0,6	0	24	W4E2	-0,6	0	27	W6E1	88	3	13	
6	-0,6	0	27	W7E1	-0,6	1,2	27	W8E1	80	1		
7	-0,6	0	27	W18E1	-0,6	-0,908437	27	W9E1	80	1	10 15	
8	-0,6	1,2	27	W10E1	-0,6	4	27	W12E1	80	3	44 5 9 17	
9	-0,6	-0,908437	27	W14E1	-0,6	-3,5	27	W16E1	80	3	16	
10	-0,6	1,2	27	W11E1	-4,34883	1,29382	27		20	4		
11	-0,6	1,2	27	W6E2	3,14982	1,16293	27		20	4	1 3 4	
12	-0,6	4	27	W13E1	-4,34972	4,04576	27		20	4	~	
13	-0,6	4	27	W8E2	3,14903	3,91487	27		20	4	4	
14	-0,6	-0,908437	27	W15E1	-4,34996	-0,891908	27		20	4		55 (S. 1
15	-0,6	-0,908437	27	W7E2	3,14968	-0,957356	27		20	4	No. 1 Surger	
18	-0,6	-3,5	27	W17E1	-4,34995	-3,48032	27		20	4	241440	
17	-0,6	-3,5	27	W9E2	3,14995	-3,48032	27		20	4		
18	-0,6	0	27	W5E2	-0,6	0	28		80	1	3	
5	Source Dat	a									3	
File	Edit Sear	ch Format									1 t	
E.			EZNEC	+ ver. 5.	. 0							
TX2	nt-mini	mec around				82/82/21	889	17.21.14	ï		2	
		neo gi ounu				027 027 2						
			20	URCE DATA							1 t	
Fre	equency	= 1,83 MHz										
Ser	IPC0 1	lloltage	o = 20	91 II at 4	nob 02 7						1	
Source 1 Voltage = 29,31 V at 17,39 deg. Current = 1 A at 0,0 deg. Impedance = 27.97 + 1 8.76 nhms												
											∳ ⊛	
		Power	= 27,97	watts		No.						
		SWR (5	0 ohm s	ystem) =	1,866	(75 ohm §	system)	= 2,72	ł			
1												

With these impedance data let's go on the old classic "Gamma" program. At that time I was using my original one, typed in basic language from a listing published on "Ham Radio – January 1985" by WB0IKN. Now an improved version, though still in DOS, is available with all the ARRL Antenna Books free software.

The following is the printout of the results:

Gamma Match Design

Using W7ITB, WB0IKN, W6NL Equations Version 2.0, April 2000

Frequency, MHz: 1.83 Driven element diam: 27 Gamma rod diam: 1.1 Gamma rod spacing: 36 Feed point resistance: 28 Feed point reactance: 9 Feed line impedance: 50

Gamma length (degrees): 36.9384 Gamma length (feet): 55.17212 Gamma length (inches): 662.0654 Gamma capacitor (pF): 447.1565

Do another (Y/N)?

I installed on the side of the tower an aluminium tube of 28 mm. diameter and 20 m. long, with mounting clamps adjustable for both distance and tapping positions.

In fact the final length of the gamma rod resulted to be, for the best final match, 17.5 meters.

In the first years I was used to lay down about 60 quarter wave radials but, after a couple of seasons of rolling and unrolling them, I decided to change the ground system into a four elevated and tuned radials.

It appeared to be no decrease in the antenna efficiency and I never came back to the nuisance of the on ground radials!

There was no need to climb the tower to change the tapping position of the gamma rod, but just to find a new capacitance value for minimum SWR.

After fighting with combinations of mica and variable capacitors, I bought from "Fair Radio Sales" for 210 US\$ a surplus Jennings ceramic vacuum capacitor, rated at 5KV, with a smooth regulation from 5 to 1.000 pF and never got a problem.

The following is the TX antenna model with the gamma match and the four elevated radials on real high accuracy ground. The gamma rod on this model is tapped here at 16 m. high and leads to a resistive part of the matched impedance of 44 ohms; a little bit higher should had led to 50 ohms, but it's already quite satisfying.

Anyway I did not change anything. In the last 15 years I never climbed the tower to modify the gamma rod dimensions from the original 18 m. tapping point, as I never had any problem in working all the DX stations I was hearing. My problem is not on transmitting, but always on the receiving side, aimed at pulling out of the noise all the weak signals answering my CQs.

This is a check reading of the TX antenna taken today with the AEA CIA Analyzer.

February 2009

Luis IV3PRK